## 32KB Upgrade for M100 and PC-8201

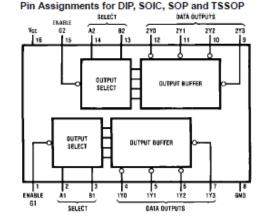
by Steve Adolph February 2010

- Use this upgrade if you can't get the custom OEM ram modules, and you want to upgrade to 32k in the M100, or 2x32k in the PC-8201
- This upgrade uses 62256 class of 32kB SRAM chips in 28 pin DIL packages
  - There are tons of different part numbers that fit this category
  - In general you want low power versions
  - The part you use should match the pinout shown in this document
- 3 Steps in the process
  - Step 1: Removal and/or de-activation of existing 8KB ram modules
  - Step 2: Installation of new 32KB ram chip(s)
  - Step 3: Installation of 74HC138 decoder to generate the chip select(s)

# Preparation

- What you will need:
  - Xacto knife for cutting PCB traces
  - Some 5 minute epoxy or similar
  - One or two 62256 type ram chip
  - 74HC138 decoder chip
  - Solder, wire-wrap wire, wire strippers, pliers, philips screwdriver
  - Solder pump or solder wick for removing solder
- To get started:
  - Open the case, disconnect the top from bottom
  - Remove all socketed ram modules
  - Remove the motherboard from the case
    - Be careful to remember how to put it back together!

## Step 1: PC-8201 ram disable

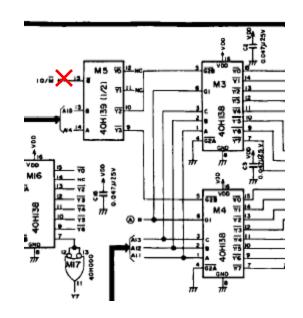

## To disable the soldered-in ram-

- Disconnect IO/M from pin 1 of U1
  - Cut the track on the primary side of the board, near pin 1
  - Or, clip the pin at the chip, leaving a shoulder to solder to
- Solder a wire from pin 1 of U1 to pin 16 of U1 to tie cut signals to +5V
  - This disables the 74HC139 decoder, making the 4 downstream 74HC138 decoders inoperative as well.

# 77 7 8 70 20 6 70 77 0.022 7 77 0.022 7 77 0.022 7

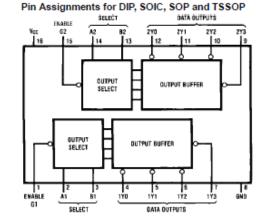
#### **Truth Table**

| In     | puts |        | Outputs |    |    |    |  |
|--------|------|--------|---------|----|----|----|--|
| Enable | Sel  | Select |         |    |    |    |  |
| G      | В    | Α      | Y0      | Y1 | Y2 | Y3 |  |
| н)     | Х    | Х      | Н       | Н  | Н  | Н  |  |
|        | L    | L      | L       | Н  | Н  | н  |  |
| L      | L    | н      | н       | L  | Н  | н  |  |
| L      | н    | L      | н       | Н  | L  | н  |  |
| L      | н    | Н      | н       | Н  | Н  | L  |  |




H = HIGH Level L = LOW Level X = Don't Care

## Step 1: M100 ram disable


## To disable the soldered in ram-

- Disconnect IO/M from pin 15 of M5
  - Either cut a track, being careful to maintain other connections
  - Or, clip the pin at the chip, leaving a shoulder to solder to
- Solder a wire from pin 15 of M5 to pin 16 of M5 to tie cut signal to +5V
  - This disables the 74HC139 decoder, making the 2 downstream 74HC138 decoders inoperative as well.

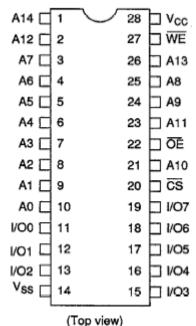


#### **Truth Table**

| In     | puts   |   | Outputs |    |    |    |  |
|--------|--------|---|---------|----|----|----|--|
| Enable | Select |   |         |    |    |    |  |
| G      | В      | Α | Y0      | Y1 | Y2 | Y3 |  |
| н)     | Х      | Х | Н       | Н  | Н  | Н  |  |
| 1      | L      | L | L       | Н  | Н  | н  |  |
| L      | L      | н | н       | L  | Н  | н  |  |
| L      | н      | L | н       | Н  | L  | н  |  |
| L      | н      | Н | н       | Н  | Н  | L  |  |

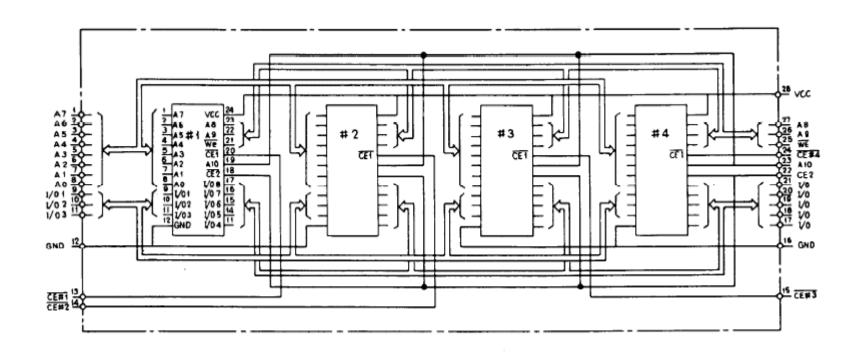


H = HIGH Level L = LOW Level X = Don't Care

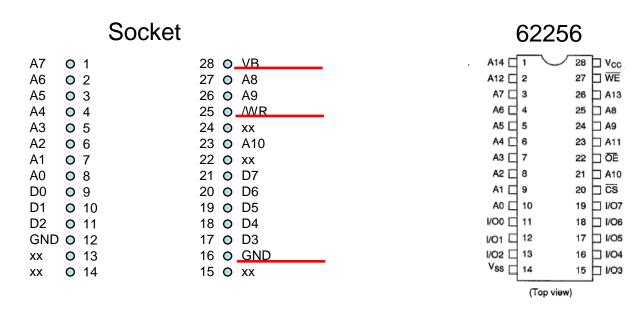

## 62256 Ram chips

- 28 pin DIP package, see truth table below
- The /CS signal is a special signal in that it toggles between VB and GND, not +5 and GND. /CS signal is the only control that can put the chip in sleep mode, and is the only signal used to enable the device for a read/write
- /OE should be grounded in this application
- /WE should be = /WR signal in M100

#### Truth Table


| _ | CS | ŌE  | WE         | Mode         | V <sub>CC</sub> current            | I/O pin | Reference cycle    |
|---|----|-----|------------|--------------|------------------------------------|---------|--------------------|
|   | Н  | ) x | <b>x</b> , | Not selected | I <sub>SB</sub> , I <sub>SB1</sub> | High Z  |                    |
|   | L  | L   | н          | Read         | lcc                                | Dout    | Read cycle No. 1-3 |
|   | L  | н   | L          | Write        | lcc                                | Din     | Write cycle No. 1  |
|   | L  | L   | Ł          | Write        | Icc                                | Din     | Write cycle No. 2  |

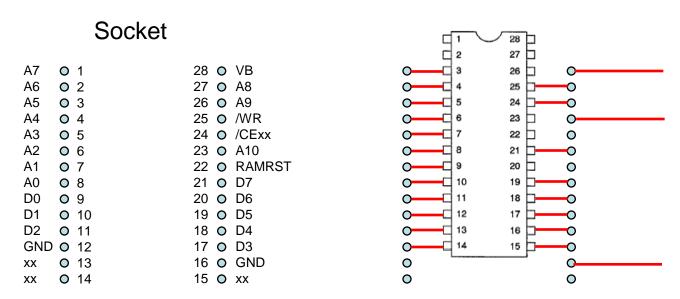
Note: x means H or L




## M100 Ram Module Socket

- Lots of pins are in the right place, some are not
- For reference, the below diagram shows the pinout of the M100 ram module




## Step 2: Preparation of the socket



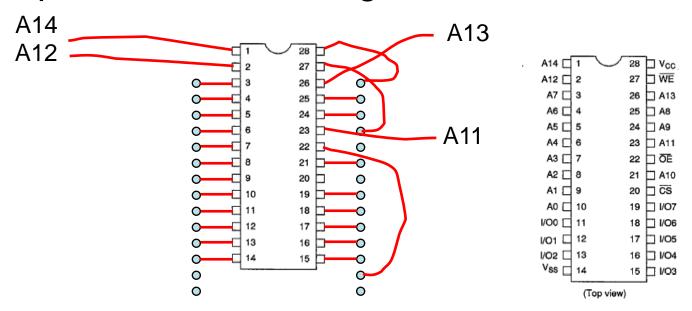
- solder a wire to
  - VB pin 28
  - /WR pin 25
  - pin 16 GND
- bend chip leads away from the socket so that the ram chip is clear to be inserted.

## Step 2: Insert Ram chip in socket

### 62256 in socket



- Spread leads of ram chip to fit socket
- clip chip pins 1, 2, 28, 27, 26, 23, 22 and 20 at the shoulder, leave the stub
- bend stub up and away from the socket pin, so that access to both the socket pin and the ram stub pin is possible.
- insert ram chip(s) into ram module socket(s)
- you should still have three wires unconnected on socket pin 28, 25 and 16


## Step 2: connect power and /WR

#### 62256 in socket

|                                                    | Socket                                                              |                                                                                                                     | 1 28                                                       |
|----------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| A7<br>A6<br>A5<br>A4<br>A3<br>A2<br>A1<br>A0<br>D0 | O 1<br>0 2<br>0 3<br>0 4<br>0 5<br>0 6<br>0 7<br>0 8<br>0 9<br>0 10 | 28 O VB<br>27 O A8<br>26 O A9<br>25 O /WR<br>24 O /CExx<br>23 O A10<br>22 O RAMRST<br>21 O D7<br>20 O D6<br>19 O D5 | 1 28 27 27 3 26 3 26 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| D2<br>GND<br>xx<br>xx                              | 0 11                                                                | 18 O D3<br>18 O D4<br>17 O D3<br>16 O GND<br>15 O xx                                                                | 13 16 0<br>14 15 0                                         |

- Vb -solder lead from pin 28 of socket to pin 28 of ram chip
- /WE solder lead from pin 25 of socket to pin 27 of ram chip
- /OE solder lead from pin 16 of socket to pin 22 of ram chip

Step 2: connect missing address lines



| Line | M100 location | PC-8201 location (note – connect on underside of PCB) |
|------|---------------|-------------------------------------------------------|
| A14  | pin 14 of M5  | Pin 2 U1                                              |
| A13  | pin 3 of M4   | Pin 3 U4                                              |
| A12  | pin 2 of M4   | Pin 2 U4                                              |
| A11  | pin 1 of M4   | Pin 1 U4                                              |

PC-8201 note: make sure these wires stay clear of case, when reassembling.

# Step 3: generating /CS1 (and /CS2)

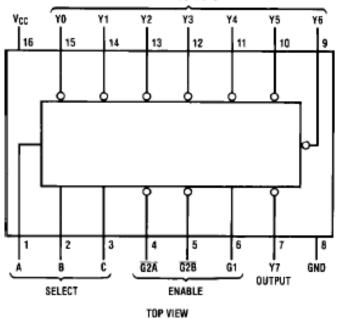
- Use a 74HC138 decoder to generate /CS1, /CS2
  - You can purchase them on eBay, or otherwise, or
  - you can de-solder and reused one of the unused 74HC138s.
    - Unused means no ram chips hanging off of it!
    - In PC8201, there are 3 spares U3, U4, U5.
    - In 8k M100, there is one spare M3
    - No spares in 24k M100.

## Proper /CS requirements

- it will toggle between +5V and GND during normal operation
- It will be pinned at Vb when the chip is in protect/standby mode
  - This happens when reset is hit, or the machine is off
- This is done by powering the 74HC138 from Vb.

## Step 3: location for 74HC138

## Preparation


- You will want to glue the chip on it's back so the pins are up in the air
- Bend the chip leads gently outwards so that they are more gull-winged, and don't stick up quite so high.

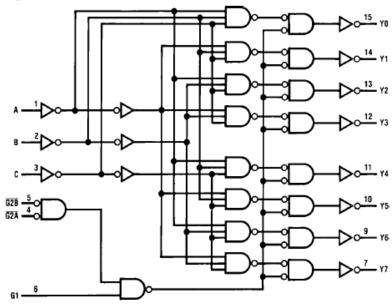
## Placement

- in both models, you can place the chip on the board between the socket pins of an unused ram module socket.
  - In PC-8201, it is easier to place it on the "internal" side, not in the expansion bay.
  - In the M100, it must be placed internally.

## 74HC138 decoder

## Pin Assignment for DIP, SOIC, SOP and TSSOP DATA OUTPUTS




**Truth Table** 

|    | Inputs        |   |   |        |    |    |    | Out | puts |    |    |    |
|----|---------------|---|---|--------|----|----|----|-----|------|----|----|----|
|    | Enable Select |   |   | $\neg$ |    |    |    |     |      |    |    |    |
| G1 | G2 (Note 1)   | С | В | Α      | Y0 | Y1 | Y2 | Y3  | Y4   | Y5 | Y6 | Y7 |
| Х  | Н             | Х | Х | Х      | н  | Н  | Н  | Н   | Н    | Н  | Н  | Н  |
| L  | X             | Х | X | X      | н  | Н  | Н  | Н   | Н    | Н  | Н  | н  |
| н  | L             | L | L | L      | L  | Н  | Н  | Н   | Н    | Н  | Н  | Н  |
| н  | L             | L | L | Н      | н  | L  | Н  | Н   | Н    | Н  | Н  | н  |
| Н  | L             | L | Н | L      | н  | Н  | L  | Н   | Н    | Н  | Н  | Н  |
| н  | L             | L | Н | Н      | н  | Н  | Н  | L   | Н    | Н  | Н  | н  |
| н  | L             | н | L | L      | н  | Н  | Н  | Н   | L    | Н  | Н  | Н  |
| н  | L             | н | L | Н      | н  | н  | Н  | Н   | Н    | L  | Н  | н  |
| н  | L             | н | Н | L      | н  | н  | Н  | Н   | Н    | Н  | L  | н  |
| н  | L             | н | Н | Н      | н  | Н  | Н  | Н   | Н    | Н  | Н  | L  |

H = HIGH Level, L = LOW Level, X = don't care

Note 1: G2 = G2A+G2B

#### Logic Diagram



# Step 3: 74HC138 connections

| 74HC138  | M100                           | PC-8201                        |
|----------|--------------------------------|--------------------------------|
| 1, A     | A15 (pin 13 M5)                | A15 (pin 12 U23)               |
| 2, B     | GND (pin 12 any ram socket)    | /STDRAM (pin 5 U3)             |
| 3, C     | Vb (pin 28 any ram socket)     | /BANK2 (pin 5 U5)              |
| 4, /G2A  | RAMRST (pin 22 any ram socket) | /POWER (pin 22 any ram socket) |
| 5, /G2B  | IO/M (pin 15 M5)               | IO/M (pin 1 U1)                |
| 6, G1    | A* (pin 6 M4)                  | E (pin 6 U3)                   |
| 10, /CS1 | Connect to 62256 /CS           | Connect to 62256 /CS, bank 1   |
| 12, /CS2 | N/A                            | Connect to 62256 /CS, bank 2   |
| 8, GND   | GND (pin 12 any ram socket)    | GND (pin 12 any ram socket)    |
| 16, Vcc  | Vb (pin 28 any ram socket)     | Vb (pin 28 any ram socket)     |

## Finishing up:

- Glue down any wires that need to be tacked in place
- Reassemble the unit
- Test it out/debug as needed

